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Abstract
We propose an unprecedented bounding theory which generates converging
bounds to the Regge poles of rational fraction scattering potentials. This is
made possible by the recent work of Handy (2001 J. Phys. A: Math. Gen. 34
L271) and Handy and Wang (2001 J. Phys. A: Math. Gen. 34 8297) which
transforms the Schrödinger equation into an equivalent fourth-order, linear
differential equation for the probability density. This new representation is
better suited for numerical considerations, since the rapid oscillations of the
Regge-pole wavefunction are factored out. More importantly, the moments
of the probability density can be constrained (and thereby the underlying
complex angular momentum parameter of the effective potential function)
through appropriate moment problem theorems, as incorporated within the
eigenvalue moment method of Handy and Bessis (1985 Phys. Rev. Lett. 55
931) and Handy et al (1988 Phys. Rev. Lett. 60 253).

PACS numbers: 03.65.Fd, 03.65.Ge

1. Introduction

The complex angular momentum representation (Connor 1990), involving Regge-pole
calculations, has proved very successful in the analysis of atomic, molecular, and electronic
collision problems, as demonstrated in the recent works by Amaha and Thylwe (1991, 1994),
Andersson (1993), Germann and Kais (1997), Sofianos et al (1999), Sokolovski et al (1998),
Vrinceanu et al (2000a, 2000b), and references therein, especially for singular potentials (i.e.
potentials diverging faster than r−2 at the origin).

The development of new and reliable methods for calculating accurate Regge-pole
trajectories is particularly important because of the difficulty in implementing WKB
approximation methods (Connor 1990). Such approaches require a good understanding of
the behavior of the relevant complex turning points, and the attendant problem of identifying
the correct Stokes line topology.
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Numerical integration methods are important because analytical approaches may not be
readily forthcoming for varied types of problems. Within the framework of the complex
rotation formalism (Connor 1990), which treats the Regge-pole problem as a bound state
problem, numerical analysis must deal with the intricacy of the Regge-pole wavefunction’s
rapidly oscillating behavior near the origin of the complex-r plane. That is, taking r ≡ ρeiθ ,
the wavefunction,

�(ρ, θ) = |�(ρ, θ)| exp
(

i�(ρ, θ)
)

(1)

has a phase factor that goes as

lim
ρ→0+

|�(ρ, θ)| = ∞. (2)

We propose an alternative representation, based on the recent work by Handy (2001a),
which avoids these complications. It transforms the Schrödinger equation into an equivalent
linear differential representation for the probability density. Within this nonnegativity
quantization representation (NQR) formulation the anomalous phase function is factored out.

In addition, if we apply the NQR formulation to the important class of rational fraction
potentials (or those that can be transformed into such form), one can generate converging
(lower and upper) bounds to the individual Regge poles. This is because NQR defines a
natural framework within which to apply the eigenvalue moment method (EMM) of Handy
and Bessis (1985) and Handy et al (1988a, 1988b).

This is an unprecedented achievement which can dramatically impact the generation of
high accuracy Regge-pole trajectory calculations. Such bounding theories can provide very
stringent tests for assessing the accuracy of other (faster) estimation methods; thereby defining
a valuable tool in the calculation of Regge-pole trajectories. Although the numerical examples
given here are modest, there is every expectation (based on the well established computational
achievements of EMM theory) that further refinements of the present formalism will generate
more robust, EMM-based, Regge-pole bounding algorithms.

The generation of converging bounds follows from the fact that the NQR formalism
leads to a recursive equation for the moments of the nonnegative probability density, S(ρ) ≡
|�(r(ρ, θ(ρ))|2, along any (suitably chosen) contour in the complex-r plane. Since S is
uniquely nonnegative and bounded (i.e. in the sense that all, or almost all, of its power moments
are finite) for the physical Regge-pole values, the imposition of the well known Moment
Problem constraints (Shohat and Tamarkin 1963) leads to the generation of converging lower
and upper bounds to the complex-(lR, lI), Regge poles. This is the basic philosophy of EMM
(Handy and Bessis 1985, Handy et al 1988a, 1988b).

The following discussion assumes the simplest contour, that corresponding to a straight
ray originating at ρ = 0, and with θ having (an appropriate) constant value.

In this case, the relevant moments are defined by µp ≡ ∫ ∞
0 dρ ρpS(ρ), and satisfy

a recursive moment equation, dependent on the complex angular momentum parameter,
l ≡ (lR, lI). Along the ray contour, the desired Regge-pole configuration asymptotically
vanishes, exponentially. For the case of ‘singular potentials’ (i.e. irregular-singular Sturm–
Liouville (SL) potential functions), as defined earlier, S(ρ) becomes L1, with all of its power
moments finite. For the case of non-singular potentials (i.e. regular-singular SL potential
functions), the same holds for all the power moments satisfying, {µp|p + 2(lR + 1) > −1},
where S(ρ) ≈ O(ρ2(lR+1)), as ρ → 0.

A related development is the recent application of EMM–NQR in the discrete state analysis
of non-Hermitian Schrödinger operators. The combination of EMM with NQR allows one to
generate converging bounds to the complex eigenenergies of certain PT-symmetry breaking
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Hamiltonians (Handy 2001b, Handy et al 2001). In this work, we exploit this same basic
philosophy for bounding Regge poles.

2. The NQR formulation

2.1. The singular phase factor

Consider the (normalized) radial Schrödinger equation:

−� ′′(r) +

(
V (r) +

l(l + 1)

r2

)
�(r) = E�(r). (3)

The Regge-pole configurations, for complex values of the angular momentum, l ≡ lR + ilI,
must satisfy certain boundary conditions. The first of these is that the analytic continuation in
l, into the physical angular momentum domain, must yield an r dependence consistent with
the physical solutions. This means that

lim
r→0

�(r) =
{
rl+1 for non-singular potentials

0 for singular potentials.
(4)

The other boundary condition is

lim
r→∞�(r) = N exp

(
ik(E)r

)
(5)

where k(E) = √
E > 0. These conditions are imposed along the real axis. From equation

(5), for sufficiently small and positive angles, θ > 0, the Regge-pole configuration must be
bounded in the asymptotic-ρ direction:

lim
ρ→∞ |�(ρ, θ)| = |N | exp

(
− k(E) sin(θ)ρ

)
. (6)

For the case of ‘non-singular’ potentials (i.e. limr→0 r
2V (r) = 0), the wavefunction’s

behavior near the origin is determined by the Fuchsian relation

�(r) = rl+1A(r) (7)

involving the analytic function, A(r). The explicit form for the above is

�(r) = exp
(
(lR + ilI + 1)(lnρ + iθ)

)
A(r). (8)

For fixed θ , the Regge-pole configuration behaves as

�r.p.(ρ) ≈ (ρlR+1e−θlI) exp(i[lIlnρ + θ(lR + 1)]). (9)

Along constant-θ ray, as ρ → 0+, rapid oscillations will be exhibited by the wavefunction.
This makes (conventional) numerial approaches very difficult, near the origin, in the complex-r
plane.

For the case of singular potentials, where limr→0 V (r) = α2/r2q , and q > 1, the
non-Fuchsian nature of the associated Schrödinger differential equation yields the essential
singularity structure for the wavefunction:

�(r) ≈ 1(
V (r)

)1/4 exp
(

± α

q − 1
r−(q−1)

)
(10)

obtainable from standard JWKB theory (Bender and Orszag 1978). In terms of the complex-r
plane representation, this becomes

�(ρ, θ) ≈ 1(
V (r)

)1/4 exp
(

± α

q − 1
ρ−(q−1) (cq−1(θ)− isq−1(θ))

)
(11)
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for ρ → 0, where cn(θ) ≡ cos(nθ), and sn(θ) ≡ sin(nθ).
If α > 0, then the physical Regge-pole solution must have a decaying essential singularity

behavior at the origin (for θ = 0), and this must persist for sufficiently small, positive angles,
in the complex-r plane. Thus

�(ρ, θ) →
{

0 ρ → 0

0 ρ → ∞ (12)

for θmin < θ < θmax and α > 0. An immediate estimate for the extremum angles are θmin = 0,
and

θmax = π

2(q − 1)
< π. (13)

If α = ia, and a > 0, then although the physical Regge-pole solution will satisfy the
boundary condition at the origin, along the real axis, it need not do so for θ = 0.

In all the above cases, the validity of equation (2) is very clear. Thus, the presence of very
rapid oscillations near the origin of the complex-r plane is a significant anomaly complicating
any numerical or analytical investigations. One could work within the |�(ρ, θ)|, �(ρ, θ)
representation; however, this would involve nonlinear differential equations.

2.2. The NQR differential equations

One can factor out the anomalous phase function, ei�(ρ,θ), by working with the NQR
formulation. In general, for any complex effective potential, Veff(r) ≡ V (r) + l(l + 1)/r2,
on the real axis, the NQR formalism transforms the Schrödinger equation into an equivalent,
fourth-order, linear differential equation for the proabibility density S(r) ≡ |�(r)|2. Since
we are interested in working within the complex-r plane contour corresponding to the semi-
infinite, ray, contour we adopt the more general formalism discussed in the work of Handy and
Wang (2001).

In the present work, we are concerned with those cases where θ is held fixed at some small
positive value, and the Regge-pole configuration, �r.p.(ρ) (the θ dependence is implicit) is of
L2 type, vanishing at the origin and at infinity, �r.p.(0) = 0, �r.p.(∞) = 0. We assume this
case, for simplicity. Thus, we do not discuss here the singular potential case corresponding to
α = ia.

The Schrödinger equation, along the θ ray direction, becomes

A(ρ) � ′′(ρ) + B(ρ)� ′(ρ) + C(ρ)�(ρ) = 0 (14)

where A(ρ) = 1, B(ρ) = 0 and C(ρ) = e2iθ (E − V (ρeiθ ))− l(l + 1)/ρ2.
Define the four configurations S(ρ) = �∗(ρ)�(ρ), P(ρ) = � ′∗(ρ)� ′(ρ), J (ρ) =

Im
(
�(ρ)∂ρ�

∗(ρ)
)

and T (ρ) = Im
(
∂ρ�(ρ)∂

2
ρ�

∗(ρ)
)

. These correspond to important

physical quantities. The first two are nonnegative functions corresponding to the probability
density and the ‘momentum density’, while J (ξ) is the probability flux.

The Schrödinger equation is then equivalent to the following set of coupled differential
equations (i.e. A = AR + iAI, etc):

(S ′′(ρ)− 2P(ρ))AR,I(ρ) + S ′(ρ)BR,I(ρ) + 2S(ρ)CR,I(ρ)± 2(BI,R(ρ) + AI,R(ρ)∂ρ)J (ρ) = 0

(15)

and

P ′(ρ)AR,I(ρ)± 2T (ρ)AI,R(ρ) + 2P(ρ)BR,I(ρ) + S ′(ρ)CR,I(ρ)∓ 2J (ρ)CI,R(ρ) = 0. (16)
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We have specified the most general form for the above, for completeness. Under the
simpler assumptions indicated above (i.e. A = 1, B = 0, etc), these coupled equations reduce
to three (the second relation of equation (16) generates T ):

P(ρ) = 1
2S

′′(ρ) + S(ρ)CR(ρ) (17)

∂ρJ (ρ) = S(ρ)CI(ρ) (18)

P ′(ρ) + S ′(ρ)CR(ρ)− 2J (ρ)CI(ρ) = 0. (19)

Upon substituting the first two relations in the last equation, one obtains a fourth-order linear
differential equation for S. We do not give its explicit form here (refer to Handy 2001a).

In light of the nonnegative character of S (and P ), and the fact that one is interested in
L1 physical (Regge-pole) solutions (i.e. the L2 requirement for�r.p. becomes equivalent to L1

conditions for the Sr.p. counterpart), the above equations easily lend themselves to an EMM
analysis.

Specifically, for rational fraction potentials, or those that can be transformed into such
form (although then one may have to deal with the full set of coupled S, P, J, T equations),
one can transform the above coupled equations into a coupled set of moment equations, which
in turn (usually) reduce to a linear recursion relation for the moments of S. These in turn can
be constrained to satisfy the positivity requirements ensuing from the classic moment problem
(Shohat and Tamarkin 1963), leading to converging lower and upper bounds to the complex
Regge-pole locations, l = lR + ilI. In the next section we provide one example of this.

It is important to re-emphasize that working with the {S, P, J } set of configurations is
equivalent to the original Schrödinger representation. Specifically, if we take �(ρ) ≡ eQ(ρ),
then S(ρ) = e2QR(ρ) > 0, P(ρ) = |Q′(ρ)|2S(ρ), and J (ρ) = Im(��∗′) = −QI

′(ρ)S(ρ).
Note also that S ′(ρ) = 2Re(��∗′) = 2QR

′(ρ)S(ρ). Therefore, knowledge of {S, J }
determines Q, and in turn �. We note that {S, S ′, P , J } form a closed system as well, under
the conditions of A = 1, B = 0:

∂ρ



S(ρ)

S ′(ρ)
P (ρ)

J (ρ)


 =




0, 1, 0, 0
−2CR(ρ), 0, 2, 0

0,−CR(ρ), 0, 2CI(ρ)

CI(ρ), 0, 0, 0






S(ρ)

S ′(ρ)
P (ρ)

J (ρ)


 . (20)

The numerical analysis of these equations is presently under investigation.

3. The V (r) = α2/r6 − β2/r4 scattering potential

Consider an illustrative example corresponding to the scattering potential problem

−� ′′(r) +

[
α2

r6
− β2

r4
+
l(l + 1)

r2

]
�(r) = E�(r) (21)

previously investigated by Amaha and Thylwe (1991, 1994). From equation (14), we have
C(ρ) = CR(ρ) + iCI(ρ), where

CR(ρ) = −α
2c4(θ)

ρ6
+
β2c2(θ)

ρ4
− (R

ρ2
+ Ec2(θ) (22)

and

CI(ρ) = α2s4(θ)

ρ6
− β2s2(θ)

ρ4
− (I

ρ2
+ Es2(θ) (23)

where ( = (R + i(I ≡ l(l + 1), hence (R = l2R − l2I + lR, and (I = 2lRlI + lI.
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Let us now define the moments for the three configurations, S,P , and J as µp ≡∫ ∞
0 dρ ρpS(ρ), νp ≡ ∫ ∞

0 dρ ρpP (ρ) and ωp ≡ ∫ ∞
0 dρ ρpJ (ρ). For the problem under

consideration, the Regge-pole configuration’s decaying (essential singularity) structure at the
origin allows the moments to exist for all values of p: −∞ < p < +∞.

Applying
∫ ∞

0 dρ ρp to both sides of the coupled equations in equations (17)–(19), and
integrating by parts, results in the coupled moment equations

νp = Ec2(θ)µp +

(
p(p − 1)

2
−(R

)
µp−2 +β2c2(θ)µp−4 −α2c4(θ)µp−6(24)

pωp−1 = −Es2(θ)µp +(Iµp−2 + β2s2(θ)µp−4 − α2s4(θ)µp−6 (25)

and

pνp−1 +
[
Ec2(θ)pµp−1 −(R(p − 2)µp−3 + β2c2(θ)(p − 4)µp−5 − α2c4(θ)(p − 6)µp−7

]
+2

[
Es2(θ)ωp −(Iωp−2 − β2s2(θ)ωp−4 + α2s4(θ)ωp−6

]
= 0. (26)

We see that the second moment equation (25) determines all the ω-moments, in terms of
the µ-moments, except for ω−1 (for p = 0). Let us therefore rewrite this as (p → p + 1)

ωp = +(p)
(

− Es2(θ)µp+1 +(Iµp−1 + β2s2(θ)µp−3 − α2s4(θ)µp−5

)
+ δp,−1ω−1 (27)

where

+(p) =



1

p + 1
p = −1

0 p = −1.
(28)

and δp,−1 is the Kronecker delta function.
A detailed analysis of the above moment relations will be presented in a forthcoming

work. For the immediate purposes of this brief communication, we note that upon making the
appropriate substitutions, we can reduce the above to one moment equation relation for the
µp’s. This moment equation in turn separates into two distinct moment equations: one for the
even moments, µ2η, and the other for the odd moments, uo

η ≡ µ2η+1.
The odd order moments are themselves moments of an appropriate Stieltjes measure:

uo
η = ∫ ∞

0 dξ ξηϒo(ξ), where ϒo(ξ) ≡ 1
2S(

√
ξ), and ξ ≡ ρ2. The relevant uo

η moment
equation becomes

2α4s2
4 (θ)+(2η − 6) uo

η−6 − 2α2β2s2(θ)s4(θ)
[
+(2η − 6) ++(2η − 4)

]
uo
η−5

+
[
2α2c4(θ)(2η − 3)− 2α2s4(θ)(I+(2η − 6) + 2β4s2

2 (θ)+(2η − 4)

−2α2(Is4(θ)+(2η − 2)
]
uo
η−4

+
[
2β2

(
c2(θ)(2 − 2η) +(Is2(θ)

(
+(2η − 2) ++(2η − 4)

))
+2α2Es2(θ)s4(θ)

(
+(2η) ++(2η − 6)

)]
uo
η−3

+
[

− 2(R − 2η + 4(Rη +
3

2
(2η)2 − 1

2
(2η)3 − 2β2Es2

2 (θ)+(2η − 4)

+2(2
I+(2η − 2)− 2β2Es2

2 (θ)+(2η)
]
uo
η−2

−2E
[
c2(θ)2η +(Is2(θ)

(
+(2η − 2) ++(2η)

)]
uo
η−1 + 2E2s2

2 (θ)+(2η) u
o
η

= 0. (29)
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The uo
η moments satisfy a sixth-order finite difference equation. We can pick

{uo
−5, u

o
−4, . . . , u

o
0} as the initialization, or missing moments. All of the other moments are

linearly dependent on these. We express this as

uo
η =

0∑
1=−5

Mo
η,1(lR, lI)u

o
1 (30)

where Mo
11,12

= δ11,12 , for −5 � 11,2 � 0. In addition, the Mo
η,1 coefficients satisfy the

corresponding uo
η moment equation with respect to the η-index.

To generate theuo’s (as well as theMo coefficients) we takeη � 1, and generate the positive
index moments {uo

η�1}, from equation (29) (i.e. using the 2E2s2
2 (θ)+(2η)u

o
η term). We then

take η � 0 in equation (29), and use the first term (i.e. 2α4s2
4 (θ)+(2η−6)uo

η−6) to generate all
the remaining negative index moments. We will generate the moments {uo

P1
, . . . , uo

P2
}, where

P1 � −5, and P2 � 1.
The required moment problem constraints, within the EMM procedure, correspond to∫ ∞

0
dξ ξ s

( J2∑
j=J1

Cjξ
j
)2
ϒo(ξ) � 0 (31)

for s = 0, 1, and arbitraryC’s. The J1,2 indices satisfy −∞ < J1 < J2 < +∞. These become
quadratic-form inequality constraints, upon inserting the previous linear relations:

m2∑
1=m1

uo
1

( J2∑
j1=J1

J2∑
j2=J1

Cj1Mj1+j2+s,1(lR, lI)Cj2

)
> 0 (32)

where (m1,m2) = (−5, 0). Of course, the J1,2 must be consistent with the previously defined
moment order indices P1,2. That is, for a given s value, the corresponding J ’s must satisfy
P1 � 2J1 + s < 2J2 + s � P2.

An appropriate choice of normalization is required. One may take
∑m2

1=m1
uo
1 = 1. Upon

constraining uo
0 in terms of {uo

1|−5 � 1 � −1}, and substituting in equation (32), there ensues
the linear programming inequality constraints that must be satisfied by the physical Regge-pole
solution, and which form the core of EMM’s algorithmic structure.

In order to test the validity of the above theoretical relations, we examine one of the
examples considered by Amaha and Thylwe. Specifically, we take (in terms of their notation)
α2 = 2A2/K , β2 = 3A2/K , E = A2, A = 63.641, and K = 1.1489.

In table 1 we cite the numerical results for the uo formulation, since this involves fewer
missing moment (initialization) variables. The generation of bounds to the low-lying Regge
pole manifests a clear convergent behavior, with increasing moment order P1,2.

Table 1. Bounds for the first Regge pole of the V (r) = α2/r6 − β2/r4 scattering potential
(θ = 0.3). Cf. Amaha and Thylwe’s (1994) result:(97.496 528 74,12.396 371 67).

(P1, P2) l
(L)
R < lR < l

(U)
R l

(L)
I < lI < l

(U)
I

(−14, 10) 97.4 < lR < 97.7 12.3 < lI < 12.6
(−16, 12) 97.48 < lR < 97.56 12.36 < lI < 12.45
(−18, 14) 97.4950 < lR < 97.5400 12.3735 < lI < 12.4185

4. Conclusion

The objective of this work is not necessarily to produce rapidly converging Regge-pole
bounds, but instead to confirm the validity of the general theoretical formalism, which
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is an unprecedented accomplishment. Handy (1996) has shown that through appropriate
transformations, the generation of eigenenergy bounds to singular potentials can be
dramatically accelerated. The adaptation of these, and related, methods to the present problem
requires applying EMM on a more complicated set of moment equations than those given
here. We anticipate a much faster Regge-pole EMM formulation in the near future, capable of
generating rapidly converging bounds for many of the Regge poles (for moderate l values), at
a given, arbitrary, energy. This work is ongoing.

This work was supported through a grant from the National Science Foundation (HRD
9632844) through the Center for Theoretical Studies of Physical Systems (CTSPS). The authors
are appreciative of relevant comments by D Bessis, G A Mezincescu and P Ozimba.
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